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Theory of dipolar gases

In these notes I discuss some interesting features of the physics of dipolar gases,
with a particular emphasis on those phenomena which differ qualitatively from those
known in non-dipolar gases. These notes do not intend to be a complete review on
previous work on dipolar gases (for that see recent reviews (Baranov, 2008; Lahaye
et al., 2009)), and in this sense I apologise from the very beginning to those whose work
is not explicitly cited here. I have tried to condense as much as possible adapting to the
reduced time of three lectures, and this has forced me to leave some very interesting
topics aside, including most of the theory of dipolar Fermi gases, crystallisation and
rapidly-rotating dipolar gases. I apologise for that. I hope that these notes will serve
however as a basic introduction to the topic of dipolar gases, and in particular of
why dipolar gases are so interesting, since indeed dipolar gases (most relevantly polar
molecules) may change the rules of the game!

1.1 The dipole-dipole interaction

Before discussing the physics of dipolar gases, it is of crucial importance to understand
the main features of the dipole-dipole interaction (DDI). We shall have a look as well
to various examples of dipolar gases.

1.1.1 Main features of the dipole-dipole interaction

For two particles with dipole moments along the unit vectors e1 and e2, and whose
relative position is r (see Fig. 1.1), the energy due to the DDI reads

Udd(r) =
Cdd

4π

(e1 · e2) r
2 − 3 (e1 · r) (e2 · r)

r5
. (1.1)

The coupling constant Cdd is µ0µ
2 for particles having a permanent magnetic dipole

moment µ (µ0 is the permeability of vacuum) and d2/ε0 for particles having a perma-
nent electric dipole moment d (ε0 is the permitivity of vacuum). For a polarised sample
where all dipoles point in the same direction z (Fig. 1.1b), this expression simplifies
to

Udd(r) =
Cdd

4π

1 − 3 cos2 θ

r3
, (1.2)

where θ is the angle between the direction of polarisation and the relative position of
the particles.

This interaction must be compared with the (up to now) usual van-der-Waals-like
interaction −C6/r

6, which is both isotropic and short-range. On the contrary the DDI
is:
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Fig. 1.1 Two particles interacting via the dipole-dipole interaction. (a) Non-polarised case;

(b) Polarised case; (c) Two polarised dipoles side by side repel each other (black arrows); (d)

Two polarised dipoles in a ‘head to tail’ configuration attract each other (black arrows).

• Anisotropic. As θ varies between 0 and π/2, the factor 1− 3 cos2 θ varies between
−2 and 1, and thus the DDI is repulsive for particles sitting side by side, while
it is attractive for dipoles in a ‘head-to-tail’ configuration (see Fig. 1.1(c) and
(d)). For the special value θm = arccos

(

1/
√

3
)

≃ 54.7◦ (‘magic-angle’) the DDI
vanishes.

• Long-range. One must recall that in a 3D scattering, a potential U(r) is long-
range if it decays as 1/rn with n ≤ 3. In that case

∫

U(r) d3r diverges. In this
sense, the DDI is strictly long-range in three dimensions.

1.1.2 Scattering properties. Pseudo-potential

The long-range anisotropic character of the DDI leads to peculiar low-energy scatter-
ing properties: not only the s-wave, but all partial waves contribute to scattering, in
contrast to the case of a short-range interaction, where only s-wave scattering typically
matters. Here we should recall the general theory of low-energy scattering (see, e.g.
Ref. (Landau and Lishitz, 1977)), which states that for a central potential falling off at
large distances like 1/rn, the scattering phase shifts δℓ(k) scale, for k → 0, like k2ℓ+1

if ℓ < (n − 3)/2, and like kn−2 otherwise (Landau and Lishitz, 1977). For a van der
Waals-like potential (n = 6), only l = 0 (s-wave) matters at low energies. In the ultra-
cold regime, the scattering is thus fully characterised by the s-wave scattering length a.
In the study of quantum gases, the true short-range interaction potential between the
atoms can then be replaced by a pseudo-potential having the same scattering length,
the so-called contact interaction, given by 4π~

2aδ(r)/m ≡ gδ(r).
The situation is very different if in addition to the short-range interactions there is

a significant DDI. The 1/r3 decay at large distances implies that for all ℓ, δℓ ∼ k at low
momentum, and all partial waves contribute to the scattering amplitude. Moreover,
due to the anisotropy of the DDI, the angular momentum (i.e. l) is not conserved
during scattering, and as a consequence the DDI mixes all partial waves with even (for
the case of bosons) and odd (for the case of fermions) angular momenta. For dipoles
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polarised along z, cylindrical symmetry is however preserved and the m quantum
number (related to the projection Lz of the angular momentum) is hence preserved.

The scattering matrix is hence of the form tl
′,m′

l,m = tl
′

l δm,m′ , where (l,m) and (l′,m′)
characterise the incoming and outgoing channels, respectively. The problem may be
rigorously treated by means of a multi-channel scattering theory, but we will not
discuss all details here (see e.g. (Marinescu and You, 1998)). The main conclusions
of this theory is that we may substitute the actual inter-particle interaction by an
effective pseudo-potential of the simple form:

U(r) = gδ(r) + Udd(r), (1.3)

where g is defined as above, but in principle a = a(d). Note that due to coupling
between different scattering channels, the DDI generates a short-range contribution
to the total effective potential in the s-wave channel (l = 0) that adds to the short-
range part of the inter-particle interaction. As a result, by changing the strength of
the DDI one may modify a as well. This may manifest itself quite dramatically in the
appearance of scattering resonances, so-called shape resonances (see e.g.(Marinescu
and You, 1998; Deb and You, 2001; Bortolotti et al., 2006)), when a virtual state
transforms into a new bound state. The previous pseudo-potential has been shown to
be valid away from shape resonances (Deb and You, 2001; Bortolotti et al., 2006).

The scattering of bosonic dipoles is hence determined by both long-range and short-
range interactions, whose interplay plays, as we shall see, a crucial role in the physics
of dipolar BECs. For fermionic dipoles the s-wave channel is absent, and hence the
low-energy scattering of fermionic dipoles is determined only by the long-range part.
This is of course crucial for polarised Fermi gases, since contrary to the case of a short-
range interaction, which freezes out at low temperature, the collisional cross section for
identical fermions interacting via the DDI does not vanish even at zero temperature.

1.1.3 Fourier transform of the dipole-dipole interaction

In the analysis of dipolar gases, the Fourier transform of the DDI turns out to be very
helpful. This Fourier transform may be easily retrieved by re-writing:

Udd(r) =
Cdd

4πr3

(

−4

√

π

5

)

Y20(θ), (1.4)

where Ylm are the spherical harmonics. We employ the expansion of a plane wave in
spherical harmonics:

e−ik·r = 4π

∞
∑

l=0

iljl(kr)

l
∑

m=−l

Y ∗
lm(θ, φ)Ylm(θk, φk). (1.5)

Employing the orthonormality of the spherical harmonics
∫

dθ sin θdφY ∗
lmYl′,m′ =

δll′δmm′ , and
∫

drj2(kr)/r = 1/3, we may then easily obtain that

Ũdd(k) =

∫

d3rUdd(r)e−ik·r =
Cdd

3

(

3 cos2 θk − 1
)

. (1.6)

This must be compared to the short-range interaction, which due to its contact char-
acter presents no momentum dependence. This different momentum dependence of



4 Theory of dipolar gases

both interactions plays a crucial role in the physics of dipolar gases, and more so in
the presence of trapping, as we shall see later on in these notes.

1.1.4 Dipolar gases: from tiny to huge dipoles

Before entering into the detailed discussion of dipolar gases, we should discuss what
do we actually mean by a dipolar gas. A gas may be defined as dipolar if the DDI
plays at least some role in its properties. This of course is a very broad definition,
which may include from tiny to huge dipoles, since whether the DDI is important or
not largely depends on other energy scales.

As mentioned above, the interplay between DDI and short-range interactions is
crucial in dipolar gases. We may quantify this interplay by the ratio

ǫdd = Cdd/3g (1.7)

between the dipole strength (given by the prefactor Cdd/3 of Ũdd) and the short-range
coupling constant g. In principle a dominant DDI demands ǫdd > 1, although dipolar
effects may occur even for ǫdd ≪ 1, as we discuss below.

In the following, we discuss some interesting details concerning atomic magnetic
dipoles and polar molecules, skipping the discussion about e.g. Rydberg gases, which
may present an extraordinarily large dipole moment, although a short life time as well.

Atomic magnetic dipoles. In alkali atoms, the maximum magnetic moment in the
ground state is µ = 1µB (with µB the Bohr magneton), and thus the magnetic dipolar
effects are very weak. However, reducing the scattering length to a ≃ 0 by means of
magnetic fields (Feshbach resonances) may allow to observe effects of the magnetic
DDI (Fattori et al., 2008; Pollack et al., 2009). However, this is not even necessary,
because ǫdd do not always fully characterise the importance of the DDI. This is partic-
ularly the case of spinor gases, which are composed by various internal Zeeman states.
Spin-changing collisions, which are crucial in the magnetic properties of these gases,
are typically characterised by a very low energy. As a result, even a weak DDI, as
that of e.g. 87Rb F=1, may lead to a strong modification of the magnetic properties
of spinor condensates, as recently observed at Berkeley (Vengalattore et al., 2008).

Some other atoms, like Chromium, Erbium, Europium, Dysprosium, and others,
have a large magnetic moment of several µB in their ground state, and thus experience
significant magnetic DDI. Among them, only Chromium has been Bose-condensed to
date (Griesmaier et al., 2005; Beaufils et al., 2008). Chromium has a magnetic dipole
moment of 6µB, and a scattering length of about 100 a0 (Schmidt et al., 2003). This
gives εdd ≃ 0.16 (Griesmaier et al., 2006), which allows to observe a perturbative effect
of the dipolar interaction on the expansion dynamics of the cloud (Stuhler et al., 2005).
The role of the DDI may be enhanced by means of Feshbach resonances as shown in
recent experiments in Stuttgart (Lahaye et al., 2008).

Polar molecules. Polar molecules constitute a huge leap in dipole moment (this time
electric). Heteronuclear molecules as KRb may present dipole moments larger than
0.5 Debye (1D ≃ 3.335 × 10−30 C · m). This must be compared to Chromium, which
has a dipole moment equivalent to 0.05 D. Recall that the DDI is proportional to d2,
and hence polar molecules may present a DDI two orders of magnitude (or even more)
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than Chromium. Dipolar effects are hence expected to be dominant in quantum gases
of polar molecules (ǫdd ≃ 20 for fully polarised KRb).
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Fig. 1.2 (a) Rotational spectrum of a diatomic molecule in zero field. (b) Dependence of the

first energy levels on the applied electric field E . (c) the ground state average dipole moment

〈dz〉 in the laboratory frame as a function of the applied field E . Figure from Ref. (Lahaye

et al., 2009).

A polar molecule is maximally polar when placed into its lowest ro-vibrational state
(the dipole moment scales asymptotically as R−7 with the inter-nuclear separation
R (Kotochigova et al., 2003)). However, although a molecule may exhibit a permanent

dipole moment d̂ in the molecular frame, it must be oriented in the laboratory frame
by an external electric field.

This orientation may be understood from a rigid rotor (”dumb-bell”) model which
is a simple model of diatomic molecules, which are considered basically two atoms
joined by a rigid (weightless) rod. The Hamiltonian for a rigid rotor reads Ĥrot =

BĴ
2

where Ĵ is the molecule angular momentum operator (in units of ~) and B
the rotational constant, linked to the equilibrium inter-nuclear distance R and the
reduced mass mr by the relationship B = ~

2/(2mrR
2); its typical order of magnitude

is B/h ∼ 10 GHz. The eigenstates of Ĥrot (i.e. the rotational spectrum) are the
angular momentum eigenstates |J,mJ 〉 with energy BJ(J + 1), and are 2J + 1 times
degenerate (Fig. 1.2(a)).

This degeneracy is lift in the presence of an external field E = Eez, which leads
to a Stark shift Ĥ = Ĥrot − dE cos θ, with θ the angle between z and the inter-nuclear
axis (Fig. 1.2(b)). We may then obtain the average dipole moment 〈dz〉 = d〈cos θ〉 for
the ground state using the Hellmann-Feynman theorem: 〈dz〉 = −∂E0

∂E , where E0(E)
is the ground state energy. The dipole moment 〈dz〉 increases linearly at small E ,
saturating asymptotically for dE ≫ B towards a value d (Fig. 1.2(c)). For typical
values d ∼ 1 D and B/h ∼ 10 GHz, the electric field strength corresponding to
dE ∼ B is on the order of 104 V/cm, which, from the experimental point of view, is
accessible in a relatively easy way. Note finally, that B ∼ m−1

r and smaller mr means
larger B and hence larger E to polarise (e.g. LiCs is more difficult to orient than KRb).
For more details on the orientation of polar molecules, see e.g. (Micheli et al., 2007).

As for this moment, polar molecules have not been yet brought to quantum degen-
eracy, but this quest constitutes nowadays the focus of very active on-going efforts.
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Interestingly, polar molecules in the lowest ro-vibrational and hyperfine states have
been recently achieved (Ni et al., 2008; Deiglmayr et al., 2008). I will not comment in
detail about that since a lecture was provided on this topic was provided in the Les
Houches school by D. Jin.

1.2 Dipolar Bose-Einstein condensates

We shall have a look now to the properties of dipolar bosons, and in particular of
dipolar BECs (more extensive reviews may be found in Refs. (Baranov, 2008; Lahaye
et al., 2009)). We shall focus on relatively simple scenarios, discussing some key features
including the different forms of instability, and some interesting non-linear phenomena
in dipolar BECs.

1.2.1 Non-local Gross-Pitaevskii equation

Let us consider a gas of dipolar bosons. The second-quantized Hamiltonian of the
system reads:

Ĥ =

∫

drψ̂†(r)

[

− ~
2

2m
∇2 + V (r) − µ

]

ψ̂(r)

+
1

2

∫

drdr′ψ̂†(r)ψ̂†(r′)U(r − r′)ψ̂(r′)ψ̂(r), (1.8)

where ψ̂(r) and ψ̂†(r) are the particle annihilation and creation operators, which fulfil
the usual bosonic commutation relations, V (r) is the trapping potential, and µ is
the chemical potential. The interaction potential U(r) may be approximated by the
pseudo-potential (1.3), and then our Hamiltonian becomes:

Ĥ =

∫

drψ̂†(r)

[

− ~
2

2m
∇2 + V (r) − µ+

1

2
gψ̂†(r)ψ̂(r)

]

ψ̂(r)

+
1

2

∫

drdr′ψ̂†(r)ψ̂†(r′)Udd(r − r′)ψ̂(r′)ψ̂(r), (1.9)

We may then obtain easily the Heisenberg equations for the dynamics of the field
operators, by employing the bosonic commutation rules. Since we are interested in
the case of BECs far from the critical condensation temperature, we may introduce
the usual Bogoliubov approximation ψ̂(r) ≃ ψ(r). In this way we obtain that the
Heisenberg equation transforms into the following equation for the dynamics of the
condensate wavefunction:

i~
∂

∂t
ψ(r, t) =

[

− ~
2

2m
∇2 + V (r) − µ+ g|ψ(r, t)|2

+
Cdd

4π

∫

dr′ 1 − 3 cos2 θ

|r − r′|3 |ψ(r′, t)|2
]

ψ(r, t). (1.10)

Note that this equation is a modified version of the well-known Gross-Pitaevskii
equation (GPE), or equivalently the non-linear Schrödinger equation. In the absence
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of DDI the nonlinearity is given by the term g|ψ(r)|2 term, an hence it is a local
nonlinearity similar to that found in many Kerr media in nonlinear optics. On the
contrary the nonlinearity introduced by the DDI is non-local, i.e. the wavefunction in
r depends on the wavefunction in r′ through a kernel given by Udd(r−r′). Interestingly,
this links the physics of dipolar BECs with other non-local nonlinear systems, as e.g.
plasmas where the non-locality is introduced by thermal effects (Litvak et al., 1975),
or nematic liquid crystals (Conti et al., 2003), where the non-local nonlinearity is given
by long-range inter-molecular interactions.

1.2.2 Phonon instability

The DDI is attractive along some directions, and repulsive along some others. In some
sense, we should hence naively expect a sort of hybrid behaviour between a repulsive
gas (as that of a non-dipolar gas with a > 0) and an attractive gas (as that of a
non-dipolar gas with a < 0). Interestingly, this is to some extent what happens. In
particular, we know that a gas with attractive interactions has a dangerous tendency
to collapse.

Stability is hence an issue of obvious concern in dipolar gases. Let us try to un-
derstand this important point in more detail. We shall consider a simplified 3D homo-
geneous model (no trapping), and perform a standard Bogoliubov-de Gennes analysis
of the stability. We consider a 3D BEC with a density n0. Is the dipolar BEC stable?
We shall quickly see that the answer may be no!

Let us return to the Hamiltonian (1.8). We introduce the Fourier transform ψ̂(r) =
∑

p âp exp[ip · r/~]
√
V , where V is a quantisation volume. This leads to the Hamilto-

nian in momentum space:

Ĥ =
∑

p

p2

2m
â†pâp +

1

2V

∑

p1,p2,q

Ũ(q)â†p1+qâ
†
p2−qâp2

âp1
, (1.11)

where Ũ(q) = g+Ũdd(q). Assuming a condensate in p = 0 (i.e. an homogeneous BEC),

we may approximate â0 = â†0 =
√
N , where N = n0V is the number of particles.

Expanding up to second order âp 6=0 we get up to a constant:

Ĥ =
∑

p6=0

p2

2m
â†pâp +

n0

2

∑

p

Ũ(p)
(

2â†pâp + â†pâ
†
−p + âpâ−p

)

. (1.12)

As one can easily see this Hamiltonian just couples p with −p. This means that we
can diagonalise using a Bogoliubov transformation for each p. We do not do it here
in detail because this is the standard Bogoliubov-transformation procedure. It is more
important to have a look to the dispersion resulting from this diagonalisation:

ǫ(p) =

√

p2

2m

[

p2

2m
+ 2n0

(

g + Ũdd(p)
)

]

(1.13)

Note that due to the momentum dependence of the DDI, the dispersion now has an
anomalous momentum dependence. Let us see what happens for p → 0. In that case
we may approximate
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ǫ(p) = pcs0

√

1 + ǫdd(3 cos2 θp − 1) (1.14)

where cs0 =
√

gn0

m is the sound velocity in absence of DDI. Note that for θp = π/2, i.e.
for momenta perpendicular to the dipolar orientation, ǫ(p) = pcs0

√
1 − ǫdd. As a result,

for ǫdd > 1 some excitation modes are purely imaginary. Hence, the homogeneous 3D
dipolar BEC is dynamically unstable against very long-wave length excitations. We
will denote this instability ”phonon instability”.

1.2.3 Trapped gases: geometry-dependent stability

The phonon instability scenario resembles the case of a < 0 where due to similar
reasons, an homogenous BEC is also unstable (that is easy to see from (1.13) taking
g < 0 and Ũdd = 0). However, in a trap, quantum pressure may stabilise the BEC
for small atom numbers (N < Nc). For an isotropic harmonic trap of frequency ω,
Nc|a|/aho = 0.58, where aho =

√

~/(mω) is the oscillator length (Ruprecht et al.,
1995). For anisotropic traps, the dependence on the trap geometry is weak (Gammal
et al., 2001).

The situation is very different in dipolar BECs due to the anisotropy of the DDI.
We shall see in the following that the trap geometry determines crucially the stability
of a dipole BEC. In order to see that, let us consider for simplicity a cylindrically
symmetric trap, with a symmetry axis z coinciding with the dipole orientation. The
axial (resp. radial) trapping frequency is denoted ωz (resp. ωρ), such that λ = ωz/ωρ.
Let us consider a Gaussian variational ansatz of the form:

ψ(ρ, z) =

√
N

π3/4lρl
1/2
z

e−z2/2l2ze−ρ2/2l2ρ . (1.15)

Note that the cloud aspect ratio κ = lρ/lz is in general different than the trap aspect
ratio λ1/2.

We may evaluate the expression for the total energy as a function of lρ and lz:
E = Ekin + Etrap + Esr + Edd, where

Ekin =
~

2

2m

∫

d3r|∇ψ|2 =
N~

2

2m

{

1

l2z
+

2

l2ρ

}

(1.16)

is the kinetic energy,

Etrap =

∫

d3rVtrap(r)n(r) =
Nm

4

{

2ω2
ρl

2
ρ + ω2

z l
2
z

}

(1.17)

is the trap energy (n(r) = |ψ(r)|2), and

Esr =
g

2

∫

d3rn(r)2 =
gN2

2(2π)3/2lzl2ρ
(1.18)

is the contact interaction energy.
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Finally Edd is the mean DDI, which is especially interesting for us:

Edd =
1

2

∫

d3r

∫

d3r′Udd(r − r′)n(r′)n(r). (1.19)

This expression is best evaluated in momentum space:

Edd =
1

2

∫

d3k

(2π)3
Ũdd(k)|ñ(k)|2, (1.20)

where ñ(k) = N exp[−k2
z l

2
z/4 − k2

ρl
2
ρ/4] is the Fourier transform of the density. Let

qj = kj lj (j = ρ, z), then

Edd =
CddN

2

6(2π)3l2ρlz

∫

d3qe−q2/2 2κ2 cos2 θq − sin2 θq

κ2 cos2 θq + sin2 θq

=
CddN

2

3(2π)3/2l2ρlz

{

2κ2 + 1

κ2 − 1
− 3κ2

(κ2 − 1)3/2
arctan[

√

κ2 − 1]

}

=
CddN

2

3(2π)3/2l2ρlz
f(κ). (1.21)

The function f(κ) is monotonically growing, has asymptotic values f(0) = −1 and
f(∞) = 2, and vanishes for κ = 1 (implying that for an isotropic density distribution
the mean DDI averages to zero). For a cigar-shape BEC elongated along the dipole
orientation (κ < 1), Edd < 0, i.e. the DDI is essentially attractive. This is intuitively
easy to understand, since in that case the dipoles see each other head with tail in
average. On the contrary, for an oblate trap (κ > 1) Edd > 0, i.e. the DDI is essentially
repulsive. This is again intuitive, because the dipoles see each other side by side in
average.

The physics of the dipolar BEC, and in particular its stability and the relation
between trap and cloud aspect ratio, may be obtained by minimising the energy E
with respect to lρ and lz for fix N , ωρ and ωz. A stable BEC is characterised by
the presence of a (at least local) minimum of E for finite values of lρ and lz (a local
minimum means actually a metastable solution, but we shall consider the lifetime as
infinite). The disappearance of such a minimum marks the point of destabilisation of
the condensate.

For purely dipolar interactions (i.e. a = 0) there is a critical λcr ≃ 5.2 (Santos et al.,
2000; Góral and Santos, 2002; Yi and You, 2001; Eberlein et al., 2005; Koch et al.,
2005), such that for λ < λcr the condensate is unstable for a sufficiently large number
of particles (i.e. quite similar as for the a < 0 case without DDI). On the contrary if
λ > λcr (sufficiently pancake trap), there is in principle no critical number of particles.
In other words, the phonon-like instability is geometrically stabilised (however another
type of instability may occur in that case, as we shall see later). Note that, interestingly,

the critical trap aspect ratio is λ
1/2
cr = 2.28, i.e. a slightly pancake trap, and not, as

one could naively think, a spherical trap. This is because for large N , κ → 1 when
λ → λcr, i.e. the trap is pancaked but the BEC cloud for λcr is spherical (note that
this can never happen in non-dipolar BECs).
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Let us analyse what happens when a 6= 0. Repulsive short-range interactions (a >
0) may stabilise (up to some point) an unstable dipolar BEC. Note also that even if
the mean DDI is repulsive, a sufficiently strong attractive contact interaction (a < 0)
may destabilise the BEC. Hence, for non-zero contact interactions, we may expect that
for a given λ, there exists a critical value acrit(λ) such that for a < acrit(λ) the dipolar
BEC is unstable.

For a given N , the actual curve acrit(λ) must be determined numerically (Bohn
et al., 2009). This curve decreases monotonously with λ. For very prolate traps (ωz ≪
ωρ), Edd < 0, and one expects that a positive a is necessary to stabilise the BEC
(hence acrit > 0). On the contrary, for very oblate traps (ωz ≫ ωρ), Edd > 0 and
hence one needs a sufficiently large a < 0 to destabilise the BEC (i.e. acrit < 0).

In particular, in the limit N → ∞, the asymptotic behaviour of the acrit curve
(a∞crit(0) = add ≡ mCdd/12π~

2 and a∞crit(∞) = −2add) can be easily understood, as
only the sign of the interaction term Esr + Edd (which scales as N2 and not as N
like Ekin and Etrap) determines the stability. For an extremely pancake-shaped trap
λ → ∞, the cloud has an aspect ratio κ → ∞, and, as f(κ → ∞) = −2, the BEC
is (meta-)stable only if a > −2add. In the same way, one readily understand that for
λ→ 0, the critical scattering length is add.

In (Koch et al., 2005), the influence of the trapping geometry on the stability of a
52Cr BEC was investigated experimentally. In particular, that experiment determined
the curve acrit(λ). A typical measurement is shown in Fig. 1.3. Note that, although the
main qualitative features are recovered by a simple Gaussian ansatz, to calculate the
exact stability threshold, one needs to resort to a numerical solution of the non-local
GPE (1.10) (Bohn et al., 2009).

When the system becomes unstable (due to this phonon-like instability) it collapses.
This collapse (which is induced by a change in a by means of Feshbach resonances)
has been recently observed experimentally (Lahaye et al., 2008). Interestingly the post-
collapse images present a cloverleaf pattern caused by the anisotropic collapse of the
system (see Fig. 1.4). When the atomic density grows due to the attractive interaction,
three-body losses predominantly occur in the high-density region. The centripetal force
is then decreased, and the atoms that gathered in this narrow central region are ejected
due to the quantum pressure arising from the uncertainty principle. The kinetic energy
is supplied by the loss of the negative interaction energy. As the collapse occurs mainly
in the x− y direction due to anisotropy of the DDI (in the absence of inelastic losses,
the condensate would indeed become an infinitely thin cigar-shaped cloud along z),
and therefore the condensate explodes essentially radially, producing the anisotropic
shape of the cloud.

Note finally, that phonon-instability does not necessarily lead to collapse in 2D
geometries, and may be accompanied by the formation of stable 2D solitons (Nath
et al., 2009), which are discussed in Sec. 1.2.6.

1.2.4 Trapped gases: Thomas-Fermi regime

As for the case of non-dipolar BECs, for sufficiently strong interactions, we may neglect
quantum pressure, and consider the Thomas-Fermi (TF) regime.
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µ = Vtrap(r) + g|ψ(r, t)|2 +

∫

d3r′Udd(r − r′)|ψ(r′, t)|2. (1.22)

Amazingly, the TF solution for the trapped BEC has the same inverted parabola shape
as for the non-dipolar case (Eberlein et al., 2005; O’Dell et al., 2004). This is a quite
non-trivial result, taking into account the rather complicated form of Eq. (1.22)!

In particular, the ground state density in a cylindrically-symmetric trap (with
frequencies ωρ and ωz = λωρ as above) has the form:

n(r) = n0

(

1 − ρ2

R2
ρ

− z2

R2
z

)

, (1.23)

for n(r) > 0, where n0 = 15N/(8πR2
ρRz). These expressions are the same as for the

non-dipolar case, but the explicit expressions for the TF radii are of course different.
They may be obtained by substituting (1.23) into (1.22) (Eberlein et al., 2005; O’Dell
et al., 2004):

Rρ =

[

15gNκ

4πmω2
ρ

{

1 + εdd

(

3

2

κ2f(κ)

κ2 − 1
− 1

)}]1/5

, (1.24)

with κ = Rρ/Rz, and f(κ) as above.
Interestingly, one may obtain a closed transcendental equation which links the BEC

aspect ratio (κ) and the trap aspect ratio (λ1/2):
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(a)

(b)
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Fig. 1.4 (a) Experimental images of a dipolar condensate after collapse and explosion, as a

function of the time thold between the crossing of the critical scattering length for instability

and the release from the trap. The time of flight is 8 ms. (b) Results of a numerical simulation

of the collapse dynamics, without any adjustable parameter. The field of view is 130µm ×
130µm. Figure from Ref. (Lahaye et al., 2008).

3κεdd

[(

λ2

2
+ 1

)

f(κ)

κ2 − 1
− 1

]

+ (εdd − 1)(κ2 − λ2) = 0. (1.25)

A plot of the condensate aspect ratio as a function of εdd is shown in figure 1.5.
The latter equation is quite interesting, since it may actually lead to more than

one solution κ for a given lambda (see Fig. 1.5). One of the solutions (let us call it
the normal solution) is stable (or metastable). Interestingly for a = 0 this solution

just exists for λ1/2 > λ
1/2
cr = 2.28, i.e. exactly the stability criterion obtained in the

previous section for the Gaussian Ansatz. On the contrary, the second solution, which
appears for a sufficiently large DDI (ǫdd > 1) is characterised by two main features. On
one hand it corresponds to a less pancake solution. On the other hand this anomalous
solution is unstable. Hence, contrary to what it may have been expected from our
discussion of the geometric stabilisation in the previous section a TF solution is not
stable for arbitrary large number of particles, being unstable against the nucleation of
anomalous ”bubbles”, which will eventually collapse. This means that, contrary to the
instability discussed in previous sections, we are not dealing here with the instability
of phonon-like excitations, i.e. excitations with a wavelength comparable to that of the
condensate. On the contrary, intermediate finite wavelengths become here unstable,
leading to local (and not global) collapses. This instability is directly related with the
roton instability which we will discuss in the next section.

1.2.5 Roton-like dispersion law

In the previous section we have seen that a dipolar BEC may become eventually unsta-
ble even for pancake traps, i.e. the BEC may be geometrically stabilised only to some
extent. We shall now try to understand the nature of this instability. For simplicity
of our discussion we shall concentrate in a dipolar BEC harmonically confined in the
dipole direction (z-axis) and uniform on the xy plane. The corresponding nonlocal
GPE reads then
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i~
∂

∂t
ψ(r, t) =

[

− ~
2

2m
∇2 − µ+

mω2z2

2
+ g|ψ(r, t)|2

+

∫

dr′Udd(r − r′)|ψ(r′, t)|2
]

ψ(r, t). (1.26)

where ω is the trap frequency. The ground-state wave-function is independent of the
in-plane coordinates and can be written as ψ0(z). Then, integrating over the in-plane
coordinates in the DDI, we obtain a 1D equation similar to the a GP equation for a
1D system with short-range interactions:

[−~
2

2m

d2

dz2
+
mω2z2

2
+ (g + gd)|ψ0|2 − µ

]

ψ0(z) = 0 (1.27)

where gd = 8πCdd/3. In the following we consider the case (g + gd) > 0, where µ > 0.
For µ≫ ω the BEC is in the TF regime with a density profile n0(z) = n0(1 − z2/L2)
with a central density n0 = µ/(g + gd) and a TF radius L = (2µ/mω2)1/2.

We are interested in the elementary excitations on top of ψ0, which we shall study
by means of a Bogoliubov-de Gennes analysis. We look for solutions of the form:

ψ(r, t) = ψ0(z) + u(z)eiq·ρe−iωt + v∗(z)e−iq·ρe−iωt (1.28)

where u(z) and v(z) are complex amplitudes of small oscillations of the condensate
around the ground state. The excitations are characterised by a momentum q of the in-
plane free motion. Introducing the convenient functions f± = u± v the Bogoliubov-de
Gennes equations become of the form:
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~ωf−(z) = Ĥkinf+(z), (1.29)

~ωf+(z) = Ĥkinf−(z) + Ĥint[f−(z)], (1.30)

where

Ĥkin =
~

2

2m

[

− d2

dz2
+ q2 +

∇2ψ0

ψ0

]

, (1.31)

Ĥint[f−] = 2(g + gd)ψ
2
0(z)f−(z)

− 3

2
qgdψ0(z)

∫ ∞

−∞
dz′ψ0(z

′) exp[−q|z − z′|]f−(z′), (1.32)

are respectively the kinetic and the interaction operator. For each q we have different
eigen-energies ~ω. The most interesting is the lowest branch ω0(q), which provides us
the dispersion law.

The integral term ofHint[f−] originates from the nonlocal character of the DDI and
gives rise to the momentum dependence of an effective coupling strength. In the limit
of low in-plane momenta qL ≪ 1, this term can be omitted. In this case, excitations
of the lowest branch are essentially 2D and the effective coupling strength corresponds
to repulsion. We then recover the Bogoliubov-de Gennes equations for the excitations
of a trapped non-dipolar BEC with a coupling constant (g + gd) > 0. In particular,
at q → 0, we recover phonons propagating in the xy-plane, with a sound-velocity
cs = (2µ/3m)1/2.

The situation is very different for qL≫ 1. In that case, the excitations become 3D
and the effective coupling strength is reduced to (2g − gd), as one can put z0 = z in
the arguments of f and ψ0 in the integrand of Eq. (1.32). We hence recover once more
the Bogoliubov-de Gennes equations for excitations of a non-dipolar condensate but
now with a coupling constant (2g − gd). If the parameter β = gd/g < 2, this coupling
constant is positive and one has excitation energies which are real and positive for any
momentum q and condensate density n0. For β > 2, the coupling constant is negative
and at a sufficiently large density the condensate becomes dynamically unstable with
regard to creation of high momentum excitations.

We hence see that something quite remarkable may happen due to the momentum-
dependence of the DDI. For low momenta we may have stable phonons (i.e. no phonon
instability as that discussed in Sec. 1.2.2), but the BEC may be anyway unstable at
finite momenta. Fig. 1.6 shows a typical dispersion law as directly obtained from
the Bogolibov-de Gennes equations. Note the significant departure when compared to
the usual Bogoliubov spectrum. The usual Bogoliubov spectrum is characterized by
a phonon dispersion (∼ q) at low q and a single-particle dispersion (∼ q2) at large
momenta. On the contrary the dispersion law in a dipolar BEC may become non-
monotonical. For in-plane momenta qL ≪ 1 we have 2D phonon-like excitations, for
qL > 1, excitations are 3D and the interparticle repulsion is reduced. This decreases
the excitation energy under an increase of q. The dispersion reaches a minimum and
then starts to grow as the excitations enter the single-particle regime. This minimum
resembles that found in Helium physics (although the physics behind is actually rather
different), and hence we shall call it in the following roton-like minimum. If this roton
touches zero, the BEC will then become dynamically unstable.
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The existence of a roton-like minimum is a remarkable characteristic feature of
dipolar condensates. Dipolar BEC constitutes indeed the first example of a weakly-
interacting gas which may show a roton-like minimum in the dispersion, which up to
now has been observed only in the relatively more complicated physics of liquid Helium.
Moreover, in contrast to the Helium case, by varying the density, the frequency of the
confinement, and the short-range coupling, one can easily manipulate and control the
spectrum, making the roton minimum deeper or shallower. One can also eliminate it
completely and get the Bogoliubov-type spectrum or, on the opposite, reach the point
of instability.

The roton-like minimum has not been yet observed experimentally, although on-
going experiments in this direction are performed in Stuttgart. If created the presence
of a roton-like minimum may be revealed in various ways: reduction of the superfluid
critical velocity (Santos et al., 2003), ”halo” effect at finite temperature in time-of-
flight images (Wang and Demler, 2010), or the dramatically altered response of the
system against a periodic driving in the presence of a roton-like minimum (Nath and
Santos, 2010).

Let us finally comment on the fate of the condensate after the roton instability sets
in. The presence of dynamical instability at finite momentum, seems to suggest that
the system may develop a modulation with a finite wavelength provided by the inverse
roton momentum. if this were so, this could open a route towards supersolidity (one of
the holy grails of condensed matter physics), which is a superfluid with both diagonal
and non-diagonal long-range order. Unfortunately, it seems that the ultimate answer
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to this problem is negative. The formation of a modulation is just a transitien which
quickly leads to the formation of local collapses (Dutta and Meystre, 2007; Komineas
and Cooper, 2007; Shlyapnikov and Pedri, 2006). However, it has been shown recently
that introducing a cut-off of the dipole-dipole interaction at short distances may sta-
bilize the supersolid pattern. This may occur by properly tailoring inter-molecular
interactions (Wang, 2010). Another possibility is provided by the dipole-blockade in
Rydberg gases, as recently studied in Refs. (Henkel et al., 2010; Cinti et al., 2010).

1.2.6 Solitons

The 1D Gross-Pitaevskii equation (with a < 0) supports the existence of solitons, i.e.
localized waves that travel with neither attenuation nor change of shape due to the
compensation between dispersion and nonlinearity (Zakharov and Shabat, 1972). Soli-
tons have been indeed observed in quasi-1D condensates with a < 0 (Strecker et al.,
2002; Khaykovich et al., 2002). The quasi-1D condition requires a tight transversal
harmonic trap of frequency ω⊥ such that ~ω⊥ exceeds the mean-field interaction en-
ergy. This in turn demands the transversal BEC size to be smaller than the soliton
width. When this condition is violated the soliton becomes unstable against transver-
sal modulations, and hence multi-dimensional solitons are not stable in non-dipolar
BECs. Remarkably the latter is not necessarily true in dipolar BECs, where as a con-
sequence of the non-local non-linearity 2D bright solitary waves may become stable
under appropriate conditions (Pedri and Santos, 2005). In the following we shall dis-
cuss the scenario studied by Tikhonenkov et al. (Tikhonenkov et al., 2008), since it is
closer to possible actual experiments (with Chromium) than the original proposal of
Ref. (Pedri and Santos, 2005).

The possibility of obtaining stable solitary waves may be easily understood from
a simplified discussion where we consider no trapping in the xz-plane and a strong
harmonic confinement with frequency ωy in the y-direction. The dipole are oriented
along the z direction, i.e. within on the plane of the trap. A good insight on the
stability of the solitons may be obtained from a simple Gaussian ansatz:

ψ(r) =
1

l
3/2
y

1

π3/4ΛxΛz
e

1

2l2y

„

x2

Λ2
x

+ z2

Λ2
z
+y2

«

(1.33)

where ly =
√

~/mωy is the oscillator length along the transverse direction, and Λx,z

are variational parameters that determine the width of the width of the Gaussian (in ly
units). We may insert this ansatz into the Hamiltonian of the nonlocal GPE, obtaining
(apart from unimportant constants):

ǫ ≡ E

N~ωy
=

1

4(Λ2
x + Λ2

z)
+

g̃

4πΛxΛz

[

1 + ǫddh

(

Λx

Λz
,

1

Λz

)]

, (1.34)

where g̃ = m
~2

Ng√
2πly

, and

h(α, β) = −1 + 3

∫ 1

0

ds
3αβs2

[1 + α2 − 1)s2]
1/2

[1 + β2 − 1)s2]
1/2

. (1.35)
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where for g > gcr the soliton is unstable against collapse even for εdd > 1. Figure from

Ref. (Nath et al., 2009).

Let us consider first what happens for non-dipolar gases. In that case ǫdd = 0 and

ǫ(Λ = Λx = Λz) =
(1 + g̃/2π)

2Λ2
, (1.36)

hence depending on the sign of 1 + g̃/2π the system minimises the energy either by
expanding without limits, or by contracting without limits. The localised solution is
hence unstable. This is once more the well-known instability of solitons in 2D.

The extra term provided by the DDI is quite interesting, since it introduces an
additional dependence on Λx,z. This allows (under appropriate conditions) for a min-
imum in the energy, and hence for a stable self-localised solution! This minimum is
characterised by its equilibrium widths Λx0 and Λz,0. Note that they are in general
not equal. This asymmetry comes of course from the fact that the dipole is along the
z direction. In Fig. 1.7 (Nath et al., 2009) we show the stability diagram as a function
of g̃ and ǫdd. There we observe two instability regions for 2D solitons (against col-
lapse and against unlimited expansion). For ǫdd > 1, there is a critical universal value
g̃cr(β) ≡ gNcr/

√
2πlz such that for N > Ncr the minimum of E(Λx,Λz) disappears.

As a consequence, stable 2D anisotropic self-localised solutions are stable only for a
number of particles per soliton below a critical number Ncr, which decreases for larger
ǫdd. Beyond this number the 2D soliton collapses. This result is also verified by a direct
simulation of the 3D nonlocal Gross-Pitaevskii equation.

In this simplified discussion we have assumed that the problem remains 2D. If the
interactions increase the problem becomes 3D, and one may show that the condensate
becomes eventually unstable (Pedri and Santos, 2005; Tikhonenkov et al., 2008).

A major difference between bright solitons in non-dipolar and dipolar BECs con-
cerns the soliton-soliton scattering properties. Whereas 1D solitons in non-dipolar
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BECs scatter elastically, the scattering of dipolar solitons is inelastic due to the lack
of integrability (Krolikowski et al., 2001). The solitons may transfer centre-of-mass
energy into internal vibrational modes, resulting in intriguing scattering properties,
including soliton fusion (Pedri and Santos, 2005) (see Fig. 1.8), the appearance of
strong inelastic resonances (Nath et al., 2007), and the possibility of observing 2D-
soliton spiraling as that already observed in photo-refractive materials (Shih et al.,
1997).
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Fig. 1.9 Spontaneous dissolution of helical textures in a quantum degenerate 87Rb spinor

Bose gas. A transient magnetic field gradient is used to prepare transversely magnetised

(b) uniform or (a),(c) helical magnetisation textures. The transverse magnetisation column

density after a variable time T of free evolution is shown in the imaged x − z plane, with

orientation indicated by hue and amplitude by brightness (colour wheel shown). (b) A uniform

texture remains homogeneous for long evolution times, while (c) a helical texture with pitch

λ = 60 µm dissolves over ∼ 200 ms, evolving into a sharply spatially modulated texture.

Figure from Ref. (Vengalattore et al., 2008).

1.2.7 Dipolar effects in spinor condensates

Let us finish the discussion on dipolar BEC with some brief comments about dipolar
effects in spinor BECs, i.e. in BECs formed by atoms with non-zero spin. Dipolar effects
may lead to very interesting phenomena in spinor BECs (for a review see e.g. (Lahaye
et al., 2009)) but here we shall focus only in a particular effect which resembles the
famous Einstein-de Haas effect.

In a spinor BEC we have various Zeeman sub-levels with quantum number m.
The short-range interactions may hence occur in different s-wave scattering channels
with different total angular momentum which for the case of bosons must be an even
number (i.e. for spin-1 bosons we have just two scattering channels, namely F = 0 and
F = 2) (Ho, 1998). For each scattering channel we have an associated s-wave scattering
length aF . The short-range interactions necessarily preserve the spin projection Sz

along the quantisation axis.
The DDI for a spinor BEC is of the form

V̂dd =
Cdd

2

∫

dr

∫

dr′ 1

|r − r′|3 ψ̂
†
m(r)ψ̂†

m′(r
′)

[Smn · Sm′n′ − 3(Smn · e)(Sm′n′ · e)] ψ̂n(r)ψ̂n′(r′), (1.37)

where S = (Sx, Sy, Sz) are the spin-F matrices, Cdd = µ0µ
2
Bg

2
F /4π, and e = (r −

r′)/|r − r′|.
Interestingly, contrary to the short-range interaction the dipole-dipole interaction

does not necessarily conserve the spin projection along the quantisation axis due to
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the anisotropic character of the interaction. In particular, if the atoms are initially
prepared into a maximally stretched state, say mF = −F , short-range interactions
cannot induce any spinor dynamics due to the above mentioned conservation of total
magnetisation Sz. Dipole-dipole interactions, on the contrary may induce a transfer
intomF +1. If the system preserves cylindrical symmetry around the quantisation axis,
this violation of the spin projection is accompanied by a transfer of angular momentum
to the centre of mass, resembling the well known Einstein-de Haas effect (Santos and
Pfau, 2006; Kawaguchi et al., 2006). Due to this transfer an initially spin-polarised
dipolar condensate can generate dynamically vorticity.

Unfortunately, the Einstein-de Haas effect is destroyed in the presence of even
rather weak magnetic fields. Typically, magnetic fields well below 1 mG are necessary
to observe the effect. Due to the dominant role of Larmor precession, and invoking
rotating-wave-approximation arguments, the physics must be constrained to manifolds
of preserved magnetisation (this may be overcome in tight 2D optical lattices, as
suggested by recent results at Paris Nord (Pasquiou et al., 2011).

However the dipole-dipole interaction may have observable effects also under con-
served magnetisation Sz, even for alkali spinor condensates. The mechanism for spinor
dynamics in spinor BECs is the so-called spin-changing collisions, i.e. collisions that
conserve Sz but do not conserve the relative population of the different Zeeman com-
ponents. Spin-changing collisions are characterised by an energy scale proportional
to the difference between scattering lengths at different channels. This difference is
typically very small, and hence the energy of spin-changing collisions is very low. This
is particularly so for the case of 87Rb F = 1. As a consequence the spinor physics
may be significantly modified by the presence of other small energy scales and in
particular the DDI. Recent experiments at Berkeley (Vengalattore et al., 2008) have
demonstrated the dipolar character of spin-1 87Rb spinor BECs. In particular, these
experiments show the spontaneous decay of helical spin textures (externally created
by magnetic field gradients) toward a spatially modulated structure of spin domains
(see Fig. 1.9). The formation of this modulated phase has been ascribed to magnetic
dipolar interactions that energetically favour short-wavelength domains over the long-
wavelength spin helix. Interestingly, the reduction of dipolar interactions (by means
of radio-frequency pulses) results in a suppression of the modulation.

1.3 Dipolar gases in optical lattices

At this point we shall discuss some of the fascinating effects introduced by the DDI
in the physics of ultra-cold gases in optical lattices. We shall first comment on dipolar
BECs in 1D optical lattices, and in particular the role of the non-local inter-site inter-
actions, a major difference between dipolar and non-dipolar gases. We shall then move
away from weakly-interacting systems, discussing the extended Hubbard model. This
lattice model allows for various quantum phases which are briefly discussed. Finally we
shall comment on pair-superfluidity in bilayer Bose systems, and on filament quantum
gases in multi-layer systems.
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1.3.1 Dipolar BEC in a one-dimensional optical lattice

We shall start our discussion of dipolar gases in optical lattices with the case of a dipo-
lar BEC in a deep one-dimensional optical lattice of the form Vlatt(z) = V0 sin2(πz/∆),
where ∆ is the spacing between two sites of the lattice. For simplicity we shall consider
that there is not trapping in the xy-plane.

The potential Vlatt(z) is a periodic potential, and hence the single-particle energy
spectrum is characterised by the appearance of bands and gaps. We shall consider in
the following that the gap between the lowest and the second band is large enough
compared to other energy scales such that we may reduce our discussion to the lowest
band. Since we consider a deep lattice (tight-binding regime), a good basis is provided
by the Wannier functions (of the lowest band) φj(z), which are maximally localised at
site j. For very deep lattices, Vlatt(z) may be locally approximated at a site minimum
by a harmonic potential, and the corresponding Wannier lattice for the lowest band
may be approximated by a Gaussian function. The Wannier functions form a complete
set of functions (in the same way as the Bloch functions), and we may then project
the BEC wavefunction in the Wannier basis: ψ(r) =

∑

j ψj(r) ≡ ∑

j Ψj(x, y)φj(z).
Employing this projection we may re-write the Hamiltonian in the form

Ĥ =
∑

j,j′

[
∫

d3rψ∗
j (r)

[−~
2

2m
∇2 + Vlatt(z)

]

ψj′(r)

]

+
1

2

∑

j,j′

l,l′

[
∫∫

d3rd3r′ψ∗
j (r)ψ∗

l (r′)ψl′(r
′)ψj′(r)U(r − r′)

]

(1.38)

where U(r) = gδ(r) + Udd(r).
For sufficiently deep lattices, we may neglect in the first line all terms except for

j = j′ and those terms where j and j′ are nearest neighbours. In the same way we may
neglect in the interaction part all terms except those with j = j′ and l = l′. Due to the
Gaussian-like localisation of the on-site wavefunctions ψj(r), the neglected terms are
typically exponentially smaller than the terms kept. The Hamiltonian becomes then
of the following form:

Ĥ = −J
∑

〈i,j〉
Ψ∗

i (ρ)Ψj(ρ) +
∑

j

∫

d2ρΨ∗
j (ρ)

[−~
2

2m
∇2

xy + gδi,jδ(ρ − ρ′)

+

∫

d2ρ′Uij(ρ − ρ′)|Ψj(ρ
′)|2

]

Ψj(ρ) (1.39)

where

J ≡ −
∫

d3rφ∗i (z)

[−~
2

2m
∂2

z + Vlatt(z)

]

φj(z), (1.40)

Uij(ρ − ρ′) ≡
∫

dzdz′Udd(r − r′)|φi(z)|2|φj(z
′)|2, (1.41)

describe, respectively, hopping between nearest neighbours, and the DDI between the
site i and the site j. Note that the on-site interactions (i = j) result from the interplay
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between short-range and dipole-dipole interactions. On the contrary, the inter-site
interaction stems directly from the DDI.

Indeed, in non-dipolar gases, inter-site interactions are exponentially suppressed
since the range of the interactions is typically much smaller than the inter-site dis-
tance. On the contrary, strong inter-site interactions are a characteristic novel feature

introduced by the DDI in the physics of dipolar lattice gases. In particular, in the case
of vanishing hopping (J = 0), i.e. in the case of very deep lattices, we would obtain
in the case of non-dipolar BECs a set of independent 2D condensates at each layer.
Indeed this has been employed in several experiments (Hadzibabic et al., 2006) for
achieving 2D gases. On the contrary, the non-local inter-site interaction due to the
DDI, makes that the BECs at different layers are not independent, in spite of the
absence of hopping.

This has important consequences, for example for the excitations and the stability
of dipolar condensates. Let us analyse this.

Dipolar BEC in a single two-dimensional layer. Let us consider first the case of a
single layer, i.e. of a quasi-2D dipolar condensate. As mentioned above we can approx-
imate the lattice potential by a harmonic oscillator Vlatt(~r) ≃ mω2

zz
2/2. The wave-

function along z may be approximated by a Gaussian φ(z) = exp(−z2/2l2z)/π
1/4l

1/2
z

(lz =
√

~/mωz). The effective oscillator length lz is related to the lattice constant ∆
as lz ≈ ∆(V0/Er)

−1/4/π, where Er = ~
2π2/2m∆2 is the so-called recoil energy. The

ground state of the homogeneous 2D BEC is of the form Ψ⊥(~ρ, t) = exp(−i(µ/~ +
ωz)t)

√
n0, where n0 is the 2D density, and µ is the 2D chemical potential. Introducing

this form into the nonlocal GPE, one obtains µ = (g + gd)n0/
√

2πlz. Note that the
2D condition is satisfied for µ≪ ~ωz.

We may now evaluate the excitation spectrum following the same Bogoliubov-de
Gennes procedure employed in previous sections. We insert a plane-wave Ansatz

Ψ(~r, t) = Φ0(z) exp(−i(µ/~ + ωz)t)

(
√
n0 + uq exp(i~q · ~ρ− iǫt/~) − v∗q exp(−i~q · ~ρ+ iǫt/~)) (1.42)

into the GPE, and linearise in uq, vq, obtaining the Bogoliubov spectrum:

ǫ(q) =

{

~
2q2

2m

[

~
2q2

2m
+ 2A

]}1/2

(1.43)

where A = µ − g̃dF (qlz/
√

2), with g̃d = gdn0/
√

2πlz, and F (x) = 3
√

π
2 |x|erfc(x)ex2

.
Note that without DDI (β = 0) we recover the usual Bogoliubov spectrum for a non-
dipolar 2D BEC. In the following we consider a < 0 (this is because we would like
to have the possibility of a roton-like minimum in the quasi-2D Bogoliubov spectrum,
but of course inter-site effects are also remarkable even if a > 0). If a < 0 and β = 0,
ǫ(q)2 < 0 for q → 0, recovering the phonon instability in homogeneous BEC with
a < 0. If the dipole is sufficiently large, such that g + gd > 0, then the DDI prevents
the instability at q → 0. However, due to the q-dependence of the DDI (given by the
monotonously increasing character of the function F ), the dispersion ǫ(q) may show
for intermediate gd values a roton-like minimum at a finite value of qlz (this is similar
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as in Sec. 1.2.5). For sufficiently low DDI ǫ(q)2 < 0 at the roton-like minimum, leading
to the roton-like instability. For |β| > βcr (with βcr dependent on the ratio gn0/lz~ωz)
roton instability is prevented, and the 2D homogeneous BEC is stable.

Two layers. Let us consider now the case of two layers with no hopping. The system
is then described by two coupled GPEs of the form:

i~
∂

∂t
Ψi(ρ, t) =

[

− ~
2

2m
∇2 + g|Ψi(ρ, t)|2

+
∑

j

∫

d3r′Uij(ρ − ρ′)|Ψj(ρ
′, t)|2



 Ψ(~r, t), (1.44)

where i, j = 1, 2. Note that, crucially, the DDI couples now the i-th layer to the j-th
one. Similar to the single-site discussion, we consider a strong z-confinement at each
site, and hence we may employ a quasi-2D Ansatz Ψi(~r) = Ψ⊥,i(~ρ, t)φ(z − zi), where
φ(z) has the form discussed above, and zi is the position of the i-th lattice node. The
ground-state of the condensates at the two layers is given by Ψj =

√
n0. Introducing

this Ansatz into the NLSE (1.44) we obtain the 2D chemical potential µ̃ = µ+ λ(∆),

with µ the chemical potential of an individual well and λ(∆) = (gdn0/
√

2πlz)e
−∆2/2l2z .

Note that the inter-site interaction is a Gaussian function of the inter-site spacing
and not of the form 1/∆3. The Gaussian dependence appears since the inter-site
interactions are actually between two planes with an extension much larger (in our
homogeneous approximation infinitely larger) than the inter-site distance.

As above we are interested in the elementary excitation of these systems. For
∆ → ∞ the Bogoliubov modes at each site are independent and described by the single-
site expression (1.43). For finite ∆ the inter-site coupling leads to an hybridisation of
the modes at both sites with significant consequences, as we discuss below. As for the
single-site discussion we insert a plane-wave Ansatz Ψi(~r, t) = (

√
n0 + uqi exp(i~q · ~ρ−

iǫt/~) − v∗qi exp(−i~q · ~ρ + iǫt/~))Φ0(z − zi) exp(−i(µ̃/~ + ωz)t) into the NLSE (1.44),
and linearise in uqi, vqi. In this way we obtain four coupled Bogoliubov-de Gennes
equations for {u1,2, v1,2}, which may be diagonalised to obtain the Bogoliubov modes:

ǫ±(q) = {Eq [Eq + 2A± 2C(∆)]}1/2
, (1.45)

where

C(∆) = λ(∆) − g̃dF̃

(

qlz√
2
,

∆√
2lz

)

, (1.46)

with F̃ (x, y) = 3
√

πxex2

4

∑

α=±1 e
−2αxyerfc(x− αy).

Note that for ∆ → ∞, C(∆) = 0 and we recover two degenerate independent
modes. For finite ∆ the modes at the two wells hybridise, and two different branches
appear for each q, one stiffer than the modes for ∆ → ∞, and the other softer. The
latter is particularly interesting, since the soft mode is more prone to rotonisation
(Fig. 1.10). Interestingly, under proper conditions, two parallel non-overlapping BECs
may become roton-unstable even if they were stable separately. As a consequence, a
larger βcr is necessary to stabilise the two-well system.
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Fig. 1.10 Dispersion law (in units of E0 = ~
2/m∆2) for a single site (dashed) and for two

wells (solid) for β = −1.2, ∆ = 0.53 µm, s = 13.3, a = −2 nm, and n0/
√

2πlz = 1014/cm3.

See Ref. (Klawunn and Santos, 2009) for details.

Multi-layer case. The hybridisation (and consequent destabilisation) in two-well po-
tentials becomes even more pronounced for the case of dipolar BECs at Ns > 2 sites
of a 1D optical lattice, since a site i couples with all its neighbours j (of course with
decreasing strength for growing |i− j|). For simplicity of our analysis we consider the
case in which all lattice sites present the same 2D density n0. In that case, one may
easily generalise the two-site analysis to the multi-site case, to reach a set of coupled
Bogoliubov-de Gennes equation:

ǫ2fqi = Eq(Eq + 2A)fqi + 2Eq

∑

j 6=i

C(∆|i− j|)fqj , (1.47)

where fqi = uqi + vqi After diagonalising the matrix of coefficients at the rhs of
Eqs. (1.47), one may obtain numerically the corresponding band-like set of Ns el-
ementary excitations (Fig. 1.11). Note that the band-like spectrum has an upper
phonon-like boundary which for large Ns has an approximate sound velocity cs ≃
√

(A+
∑

n C(∆|n|))/m. The lower mode of the Ns manifold becomes significantly
softer than the individual modes for independent sites. As a consequence the roton
instability extends to larger βcr when Ns increases, until saturating for a sufficiently
large Ns (due to the decreasing DDI for increasing distance between sites).

Fig. 1.12 summarises the behaviour of the stability as a function of β (we recall
that g < 0). As mentioned above if g + gd < 0 (|β| < 1) the system is unstable
against phonon instability. For 1 < |β| < |βcr(Ns)| the system is unstable against
roton instability. |βcr| increases when Ns grows until saturating for sufficiently large
Ns. For |β| > |βcr(Ns)| the quasi-2D BECs are stable.

Summarising this section, we have seen that interlayer interactions may have rather
dramatic effects in dipolar BECs even in the absence of hopping. On one side, the
system presents band-like excitations collectively shared by the BECs at different
layers. On the other side, a BEC which would be stable in a single layer may become
unstable if other layers are present!
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1.3.2 Dipole-dipole interactions in strongly-correlated lattice gases:

extended Hubbard model

In the previous section we have seen that the inter-site interactions may have quite
dramatic effects in the physics of BECs in deep lattices. The DDI may change as well
quite significantly the physics of strongly-correlated gases in optical lattices. In this
section we shall briefly comment on that.

Let us consider a collection of dipolar bosons loaded in a 2D square lattice Vlatt(x, y)
(fermions will have also an interesting physics but we shall focus here only on bosons).
In the transversal direction we assume an harmonic confinement with frequency ωz,
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which is tight enough such that the z wavefunction is the ground-state of the harmonic
oscillator ϕ0(z). We shall assume that the dipoles are oriented perpendicularly to the
lattice.

The system is described by the Hamiltonian (note that now we keep the operator
character of the fields since we are interested in strongly-correlated systems):

Ĥ =

∫

d3rψ̂†(r)

[−~
2

2m
∇2 + Vlatt(x, y) +

1

2
mωzz

2

+
1

2

∫

d3r′U(r − r′)ψ̂†(r′)ψ̂(r′)

]

ψ̂(r), (1.48)

where U(r) = gδ(r) + Udd(r), and ψ̂(r) is the field operator that annihilates a boson
in r. As in the discussion of the previous section, since Vlatt is a periodic potential,
the single-particle energy spectrum is characterised by the appearance of bands and
gaps. As we did previously, we consider again that we can reduce to the lowest band,
and project in the basis of Wannier functions Φj(r), which are maximally localised at
site j (for a 2D square lattice j ≡ (jx, jy)). We may then express the field operator as

ψ̂(r) =
∑

j φj(r)âj , where φj = Φj(x, y)ϕ0(z) and âj annihilates a particle at site j.
Employing this projection we may re-write the Hamiltonian in the form

Ĥ =
∑

j,j′

[
∫

d3rφ∗j (r)

[−~
2

2m
∇2 + Vlatt(r)

]

φj′(r)

]

â†j âj′

+
1

2

∑

j,j′

l,l′

[
∫∫

d3rd3r′φ∗j (r)φ∗l (r
′)φl′(r

′)φj′(r)U(r − r′)

]

â†j â
†
l âl′ âj′ (1.49)

We proceed now as in the previous section. For sufficiently deep lattices, we neglect
in the first line all terms except for j = j′ (this term just leads to a global energy shift
of the sites and will be neglected below) and those terms where j and j′ are nearest
neighbours. In the same way we may neglect in the interaction part all terms except
those with j = j′ and l = l′. We may then reduce the Hamiltonian to the so-called
extended Bose-Hubbard model:

Ĥ = −t
∑

〈j,j′〉
â†j âj′ +

U0

2

∑

j,j′

n̂j(n̂j − 1) +
∑

δ
|δ|>0

Uδ

2

∑

j

n̂j n̂j+δ, (1.50)

where

t ≡ −
∫

d3rφ∗j (r)

[−~
2

2m
∇2 + Vlatt(r)

]

φj′(r), (1.51)

U0 ≡ g

∫

d3r|φj(r)|4 +

∫∫

d3rd3r′|φj(r
′)|2|φj(r)|2U(r − r′), (1.52)

Uδ ≡
∫∫

d3rd3r′|φj(r
′)|2|φj+δ(r)|2U(r − r′), (1.53)

(1.54)
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describe, respectively, hopping between nearest neighbours, on-site interactions, and
inter-site interactions. As in our discussion of Sec. 1.3.1, note again that, crucially,

the on-site interactions U0 ≡ U
(sc)
0 + U

(dd)
0 result from the interplay between short-

range (U
(sc)
0 ) and dipole-dipole interactions (U

(dd)
0 ), but the inter-site interaction (Uδ)

stems directly from the DDI. Hence the possibly quite strong interactions between
sites are a novel effect introduced by the DDI, which may change radically the physics
of strongly-correlated gases in optical lattices, as we shall discuss below.

Note that dipolar gases in 2D lattices allow for different forms of control of the
couplings constants of the extended Hubbard Hamiltonian:

• As for any other lattice gases, we may change the hopping t by changing the depth
of the lattice.

• Again, as for any lattice gas we may change the short-range interactions by em-
ploying Feshbach resonances. Note that this will affect the on-site interactions
(U0).

• Note that due to the anisotropy of the DDI the spatial dependence of the on-

site wavefunction may significantly modify U
(dd)
0 . In particular, depending on the

relation between the transversal oscillator length and the on-site extension in the

xy plane, U
(dd)
0 may be positive or negative. Hence, remarkably, by controlling the

geometry of the trapping we may control U
(dd)
0 , allowing for the change between

different interaction regimes. For example, we may reach the situation in which
U0 = 0 although Uδ 6= 0, i.e. we may get an extended Hubbard model without
on-site interactions!

• Note also that the Uδ coupling constants decay with δ (for zero-dimensional sites
as 1/δ3). As a consequence it depends on the dipole strength and the lattice
constant whether Uδ is relevant (compared to other energy scales in the system,
in particular the on-site interaction U0). Under some conditions one may consider
just the nearest neighbour (U1) or the next-to-nearest neighbour (U2), but for a
strong dipole (as that of very polar molecules) even further neighbours contribute
significantly.

• Although we do not use it here, we may also modify the angle between the vec-
tor normal to the lattice and the dipole direction. In that case, the inter-site
interactions would be anisotropic on the 2D lattice.

Hence, in addition to standard control possibilities, dipolar gases offer novel possibili-
ties for the control of quantum gases in optical lattices.

1.3.3 Quantum phases of dipolar bosons in optical lattices

For the case Uδ = 0 (i.e. the non-dipolar case) we recover the usual Bose-Hubbard
model. It is quite well known that in that case, and depending on the chemical poten-
tial, the tunneling and the on-site interactions the system may present two distinct
quantum phases: a superfluid phase, and a Mott-insulator phase (with a commensu-
rate filling per site). In dipolar gases, the extended Hubbard model leads to a much
richer physics of possible quantum phases, which we can only barely discuss here. Let
us briefly discuss some of the most remarkable consequences.
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Supersolid. Since the dipole is perpendicular to the lattice plane Uδ > 0, i.e. we have
repulsive inter-site interactions. As a result, it seems quite intuitive that the bosons
will ”dislike” to be at neighbouring sites, and hence it is not surprising that for strong
enough interactions the density of particles may present a modulation (which is not the
trivial modulation induced by the lattice). Actually for a sufficiently large Uδ (and a
commensurate filling n̄ = 1/2) the system may enter into a checkerboard phase (Góral
et al., 2002), i.e. the bosons are placed like in the dark squares of a checkerboard. This
phase is obviously an insulating phase (and actually one may call it a Mott insulator
with half-filling).

However, a much more intriguing phase may occur (Góral et al., 2002), in which
the system remains superfluid but the density presents a modulation. This phase is
called a supersolid, and constitute one of the holy grails of condensed-matter physics.
In principle this phase may be unstable against phase separation into an insulating
crystal and a superfluid. It has been recently shown by means of Quantum Monte
Carlo calculations that a supersolid may be stabilised against phase separation in an
extended Bose-Hubbard model with just nearest neighbour interactions, as long as the
filling of the lattice n̄ > 1/2 and U1 > U0/z (where z is the coordination number of
the lattice, z = 4 for a square lattice) (Sengupta et al., 2005). Note that as mentioned
above we may easily control the ration U1/U0 by Feshbach resonances or by modifying
the transversal confinement, and hence the supersolid phase may be stabilised. Not
only a checkerboard supersolid is possible, but also under proper circumstances (e.g.
including next-to-nearest neighbour interactions) one may achieve supersolids with
other patterns (striped and quarter-filled crystals) (Chen et al., 2008).

Haldane insulator. Another interesting phase induced by the DDI has been discussed
for the case of bosonic dipoles in a 1D optical lattice by Dalla Torre et al. (Dalla Torre
et al., 2006). Let us consider the case of a filling factor n̄ = 1 per site. Let us assume
that we may have sites with zero particles but consequently also sites with n = 2.
Let us assume that only these three possibilities are possible n = 0, 1, 2. One may
cut at n = 2 if U0 is sufficiently large, however one may check that the presence of
sites with n = 3 does not spoil the physics discussed below. We may then introduce a
pseudo-spin Sz = n − n̄, which may acquire values −1, 0, 1. Hence, interestingly, the
system is to a large extent equivalent to a spin-1 gas system with extended interactions,
realizing a so-called Haldane spin-1 chain. It is known that such system may present a
rather intriguing phase characterised by string correlations which imply that Sz = ±1
appear in alternating order along the chain separated by strings of Sz = 0 of arbitrary
length. In other words, we have a site with zero (two) particles, followed by whatever
number of sites with one particle, and then we have a site with two (zero) particles.
So something like:

. . . 10 1 . . . 12 1 . . . 10 1 . . . 12 1 . . .

This phase is characterised by

〈δnie
iπ

Pj

k=i
δnkδnj〉 → const 6= 0. (1.55)

In Ref. (Dalla Torre et al., 2006) it has been shown that this rather subtle phase
may be probed by parametrically modulating the lattice, and having a look into the
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absorption rate associated to the linear response (a delta like peak appears in the
absorption spectrum).

Metastable states. In addition to the ground-state phases discussed above (and some
other more exotic which we shall not discuss) the DDI lead to another interesting
phenomenon, namely the proliferation of metastable states, characterised by a non-
uniform particle distribution in the lattice (Menotti et al., 2007). These states cor-
respond to local energy minima with a very long life time. The existence of these
metastable states may be understood from the competing length scales in the prob-
lem, i.e. the combination of different non-local interactions at different neighbours. As
a result, disordered configurations of atoms lead to a disorder self-induced interaction
potential. This self-induced disorder resembles to a large extent the so-called structural
glasses in condensed-matter physics (Schmalian and Wolynes, 2000).

Because of the presence of those very many metastable states, in an experiment it
may be hard to reach the ground state or a given metastable configuration. One can use
however super-lattices in order to prepare the atoms in configurations of preferential
symmetry. Note that the configurations obtained in such a way will also remain stable
once the super-lattice is removed, thanks to the DDI.

1.3.4 Pair superfluidity in bilayer systems

Up to now we have considered the case of a 2D lattice gas of polar molecules. A very
interesting physics may appear if we have more than one such 2D layers. As mentioned
in Sec. 1.3.1 for the case of BECs, this is true even if there is no hopping between layers.
We shall illustrate this by having first a look to the idea of pair superfluidity in bilayer
systems. In the next section we shall comment on how DDI may lead to filament
quantum gases in multi-layers.

In the following, we consider dipolar bosons placed at two neighbouring, but dis-
connected, 1D traps (wires). Along the 1D systems we assume an additional lattice
equal for both 1D traps, We have hence a ladder-like configuration. In order to il-
lustrate clearly the effects of inter-layer interactions we consider a configuration for
which only the (attractive) dipole-dipole interaction between sites at the same rung
plays a significant role. This is physically possible for particular 1D dipole configu-
rations (see (Argüelles and Santos, 2007) for details), but here we just assume it for
simplicity of the discussion. Of course, in general the (repulsive) DDI between sites
belonging to the same wire cannot be neglected, and interesting physics will result
from there, as we shall briefly mention below.

Under the previous conditions the system is described by a Bose-Hubbard Hamil-
tonian similar to that of Eq. 1.50, but now with two wires

Ĥ = −J
∑

α=1,2

∑

<i,j>

{b̂(α)†
i b̂

(α)
j +H.c.} − µ

∑

α=1,2

n̂
(α)
i

+
U0

2

∑

α=1,2

∑

i

n̂
(α)
i (n̂

(α)
i − 1) − |U ′|

∑

i

n̂
(1)
i n̂

(2)
i , (1.56)

where b̂
(α)
i , b̂

(α)†
i , and n̂

(α)
i are, respectively, the annihilation, creation, and number

operators for the site i at the wire α. J describes the hopping between neighbouring
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sites i and j in each wire, U0 the on-site interactions (as already mentioned this
is a combination of short-range and dipolar contributions), and we consider the same
chemical potential µ in both wires. Atoms in sites at the same rung interact attractively
by the DDI, which is characterised by a coupling −|U ′|.
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Fig. 1.13 Phase diagram for |U ′|/U0 = 0 (a), 0.25 (b), 0.5 (c), and 0.75(d), where white

represents 2SF, gray MI, and black PSF. Figure from Ref. (Argüelles and Santos, 2007)(E).

The ground-state phases are characterised by the correlation functions G1(∆) =

〈b̂†0,αb̂∆,α〉 and G2(∆) = 〈b̂†0,1b̂
†
0,2b̂∆,1b̂∆,2〉. Note that G1 is the single-particle density

matrix along an individual wire, whereas G2 is related with pairs placed in the same
rung of the ladder but at opposite wires. The phase diagram of the system presents
three distinct phases (Fig. 1.13):

• Mott-insulator (MI) (shaded regions): this is characterised by a commensurate
occupation at the sites of both wires. Figure 1.13 shows DMRG results for the
surroundings of the lowest MI lobe (with occupation 〈nα

i 〉 = 1) for |U ′|/U0 = 0
(a), 1/4 (b), 1/2 (c) and 3/4 (d). Note that in order to avoid collapse in a single
site, |U ′| < U0. For the case of U ′ = 0, the usual Mott-lobes (shaded regions)
are recovered. This is an insulating region, in which both correlations G1 and G2
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decay exponentially.

• Pair-superfluid (PSF) (black regions). In this phase G1 still decays exponentially
but G2 decays polynomically. We have hence a superfluid phase, but the super-
fluidity is given by the formation of pairs.

• Two-superfluid phase (2SF) (white regions). In this phase both G1 and G2 decay
polynomically.

The MI and 2SF phases correspond to the usual MI and SF phases known for the Bose-
Hubbard Hamiltonian. The PSF phase in bilayer systems is however rather peculiar for
dipolar gases, resembling the situation known for two-component Bose gases (Kuklov
et al., 2004).

Actually, the presence of the PSF phase drastically modifies the MI lobes (Fig. 1.13).
Let us briefly comment why this is so. The boundaries of the MI lobes are provided
by the energy gap between the MI state and the lowest excited state conserving
the particle number. In an usual Bose-Hubbard Hamiltonian (one wire, local inter-
actions) (Fisher et al., 1989) this lowest excitation is provided by particle-hole exci-
tations. The MI boundaries can then be calculated by a strong-coupling expansion
(SCE) (Freericks and Monien, 1996), estimating the energy of a state with an extra
particle and a state with an extra hole. This is indeed the case of U ′ = 0, where the
lowest excitations are given by uncorrelated particle-hole excitations in both wires.
The situation changes for |U ′| > 0, since for sufficiently low tunneling, there is a direct
transition between MI and PSF phases, i.e. superfluid phases of composites (or com-
posite holes). In that case the first excitation of the MI lobe is given by the correlated
creation of pairs of particles (or holes) at opposite sites of the two wires, explaining the
qualitative change in the shape of the lobe boundaries. In particular, a second-order
SCE in J/|U ′|, provides the following dependence for sufficiently low tunneling for the
lowest boundary of the MI lobe with n0 particles per site:

µ

U0
= n0 − 1 +

|U ′|
U0

(

1

2
− n0

)

−4

(

J

U0

)2 [

n0(n0 + 1) − (n2
0 − 1)/2

2 − |U ′|/U0
− n2

0U0

|U ′|

]

(1.57)

From Eq. (1.57) it becomes clear that for any U ′ > 0 the gap boundaries are quadratic
(and not linear) in J for sufficiently low J (this is of course so because the motion goes
in pairs). Interestingly, the lowest boundary of the first MI region (n0 = 1) inverts its
slope at J = 0 for |U |′ > U0/2, in agreement with our numerical results. One may
also observe that an inversion of the slope of the lowest boundary is expected also for
n0 = 2 at |U ′|/U0 ≃ 0.85, but it is not expected for n0 > 2.

The reentrant shape of the MI lobes leads to a non-trivial behaviour of the MI
plateaux (wedding-cake structure) in experiments with an axial harmonic confine-
ment. In particular, the MI plateaux may (for low hopping) become insensitive to
the hopping, or even counter-intuitively grow for larger tunneling. Actually this result
may be extended to 2D lattices at unconnected layers where the first MI lobe follows
at low J the relation (1.57) but substituting 2(J/U0)

2 by z(J/U0)
2, where z is the

coordination number.
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To finish this section let us point that if the repulsion along the wires (or within
the layers in 2D) is considered the bending of the Mott-lobes is preserved, and a pair-
supersolid phase may be obtained (Trefzger et al., 2009). In addition, the presence of
inter-layer hopping may lead also to interesting effects (see e.g. (Wang, 2007)). We
would also like to note that a series of very recent works have analysed the related case
of polar Fermi molecules in bilayer systems when the electric dipoles are oriented per-
pendicular to the layer planes, and the inter-layer hopping is negligible. This situation
is particularly interesting for current experiments in JILA, since chemical recombi-
nation may be strongly reduced in 2D configurations (Ni et al., 2010), as it will be
the case for the different layers. The interlayer interaction is attractive and may allow
for interlayer superfluidity, and the equivalent of a BCS-BEC crossover (Potter et al.,
2010; Klawunn et al., 2010b; Pikovski et al., 2010; Baranov et al., 2010).

1.3.5 Quantum filament gases in multi-layer systems

In the previous section we saw that the interlayer interactions may lead to the for-
mation of interlayer superfluidity given by pairs of particles placed at opposite layers.
Interestingly, it is clear that similar reasonings suggest that filaments may be formed
in multi-layer systems. These filaments may present a very interesting physics which
is only very partially understood. For simplicity of the discussion we shall have a look
here to possibly the simplest scenario which already contains many of the ingredients
which could make filament quantum gases so interesting. We consider polar Fermi
molecules in a three-layer system (actually for this discussion we shall consider three
quasi-1D wires), without inter-wire hopping, and with an harmonic trapping along the
wire. We shall consider the attractive interaction between dipoles at different wires, but
neglect interactions between dipoles along the wires. This is of course a rather rough
approximation, although in 1D it may be the case under proper conditions (Klawunn
et al., 2010a). In general intra-layer interactions will play an important role, but at
least part of the physics discussed here will be qualitatively maintained. Polar bosonic
molecules in multi-layers (under similar approximations as those discussed here) were
considered by Wang et al. (Wang et al., 2006) (see comment below).

The attraction between polar molecules placed on top of each other may be strong-
enough to bind two or more polar molecules into self-assembled chains (Fig. 1.14).
Whereas for bosonic molecules these chains are in any case bosons (Wang et al.,
2006), for fermionic molecules the fermionic/bosonic character of the filaments depends
on the odd/even number of molecules in a given chain. In particular, the three-well
configuration allows for fermionic trimers (and of course monomers), and two different
kinds of bosonic dimers, namely those between two molecules at nearest neighbours
(type I dimers), and those between two molecules at the uppest and lowest site (type
II dimers) (Fig. 1.14). Note that dimers I are actually pseudo-spin-1/2 bosons, since
dimers in sites 1 and 2 are not equivalent to dimers in sites 2 and 3.

In addition, it is important to note that transverse filament excitations contribute
to the gas entropy, being relevant at finite temperature T . These modes are string-like
perturbations of the straight filaments. Contrary to the case of bosonic molecules (Wang
et al., 2006), transverse modes are important for fermionic molecules even at very low
T since they may significantly reduce the trimer Fermi energy.
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Fig. 1.14 Polar fermionic molecules in a three-well potential may remain unpaired, form

fermionic trimers, or bosonic dimers between nearest neighbours or next-nearest neighbours.

In the following we consider the filament statistics, assuming an ideal filament
gas. This rough approximation largely simplifies the analysis of the problem, while
allowing for the discussion of key qualitative features of these systems, in particular the
competition between different Bose and Fermi composites. The fermionic or bosonic
character of the chains is reflected by the average occupations for trimers, dimers I,
dimers II and monomers:

NT (n, νT ) =
[

eβ[−ET +ξνT
+ǫn−(2µ1+µ2)] + 1

]−1

(1.58)

ND,I(n, νD,I) =
[

eβ[−ED,I+ξνD,I
+ǫn−(µ1+µ2)] − 1

]−1

(1.59)

ND,II(n, νD,II) =
[

eβ[−ED,II+ξνD,II
+ǫn−2µ1] − 1

]−1

(1.60)

NS,j(n) =
[

eβ[ǫn−µj ] + 1
]−1

(1.61)

where NS,j denotes the average occupation of individual molecules at wire j, −ET ,
−ED,I and −ED,II are the binding energies for, respectively, trimers, dimers I, and
dimers II, ξνT ;D,I;D,II

are the transverse filaments modes of the different composites,
ǫn = ~ω(n + 1/2) are the harmonic oscillator levels of the trap along the wires, and
β = 1/kBT the inverse temperature. In the previous expressions we have assumed
symmetric configurations such that the number of dimers I in sites 1–2 is the same as
the number of dimers I in sites 2–3, and equal toND,I(n, νD,I). Note that µ1 = µ3 is the
chemical potential for molecules at the uppest and lowest sites, whereas µ2 denotes the
chemical potential for molecules in the middle site. These different chemical potentials
are necessary to fulfil the normalisation conditions, in which we assume N molecules
per lattice site. Imposing symmetry between the uppest and the lowest sites, these
conditions acquire the form:

N = NT +ND,I +ND,II +NS,1, (1.62)

N = NT + 2ND,I +NS,2, (1.63)

where NT , ND,I , ND,II , NS,1 and NS,2 denote respectively the total number of trimers,
dimers I in sites 1–2 (or 2–3), dimers II, monomers in site 1 (or 3) and monomers in
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site 2. From (1.62) and (1.63) we obtain µ1(N,T ) and µ2(N,T ), and from (1.58–1.61)
the occupation numbers.

Due to the attractive DDI between molecules in the filament, the most bound
chain is the trimer. The difference in binding between dimers and trimers induces
that for sufficiently small N and at low-enough T the DCL becomes a degenerate
Fermi gas of trimers. The trimers fill up oscillator levels (and also transverse trimer
modes) up to the corresponding Fermi energy EF (N), which equals N~ω for rigid
filaments but it is actually smaller due to the transverse trimer modes. However, if the
number of molecules per site is sufficiently large, the growth in Fermi energy overcomes
the binding energy difference. This transition may be easily estimated by comparing
the average energy per molecule for the case of two trimers and that for the case
of 2 dimers I and one dimer II. This leads to a condition for the critical number of
molecules per site Nc(U0, ω), EF (Nc) = 2ET − 3(ED,I + ED,II)/2 (which we have
confirmed numerically). Note that Nc grows with growing interlayer attraction and
decreasing trap frequency ω. For N < Nc the quantum gas is a degenerate trimer gas,
whereas for N > Nc the trimer gas coexists with a mixture of pseudo-spin-1/2 bosons
(dimers I) and spin-less bosons (dimers II).

The peculiar properties of the DCL translate into the spatial molecular distribution
integrated over the three sites. For N < Nc and N < ξ1T

/ω, only trimers in their
internal ground state are formed, and hence the gas behaves as a spin-less Fermi gas
of particles of mass 3m, presenting a Thomas-Fermi density profile (1 − (x/R)2)1/2

with R/lHO =
√

2N/3. For ξ1T
/ω < N < Nc, the DCL is still a trimer gas, but

transversal trimer modes may be populated. In that case the density profile departs
from the Thomas-Fermi profile (Fig. 1.15, top), due to the appearance of internally
excited trimers in low harmonic oscillator levels. For N > Nc the density profile
changes dramatically. Note that since we consider 1D gases, dimer BEC is strictly
speaking precluded. However, due to finite size the dimers quasi-condense (at low-
enough T ) occupying the few lowest levels of the harmonic oscillator. Hence when N
surpasses Nc a Bose cloud nucleates at the trap centre. As a result the distribution of
the polar molecules shows a Gaussian-like peak at the trap centre (Fig. 1.15, bottom).

For N ≫ Nc and U0 > U∗
0 (D, II) the quantum gas is at low T a basically pure

Bose gas of dimers I and II (except for a small trimer fraction). Since both dimers
have double mass, the difference between them cannot be discerned from the analysis
of the integrated density profile of the molecules. However the different binding energy
and excited dimer modes for both types of dimers may be studied spectroscopically
to reveal the dual nature of the mixture.

The filament gas presents as well an intriguing finite temperature physics due to
the role of filament modes and the different binding energy of dimers and trimers. This
is particularly clear from a finite T analysis with N < Nc. Whereas at very low T the
DCL is purely a trimer Fermi gas, at finite T it becomes more favourable to populate
dimers than to populate higher excited trimer states. As a consequence the system
presents a striking thermal enhancement of the bosonic modes. Interestingly, contrary
to the standard situation, this leads to a maximal central peak density for a given
finite T . For even larger T the central density decreases again due to the occupation
of dimers at higher oscillator modes, and the breaking of the filaments into individual
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Fig. 1.15 Integrated density profiles of the molecules, for ξ1T

/ω < N < Nc (top), and

N > Nc (bottom). We consider U0 = 2, ω/2π = 1Hz, m = 100amu, which lead to Nc = 230.

Figure from Ref. (Klawunn et al., 2010a).

molecules.
Let us finally point that for the case of bosonic polar particles, the filaments are

obviously always bosonic. As a result, at sufficiently low temperature there is a Bose-
Einstein condensation of the largest filaments (which, we recall, are the ones with the
tightest binding) (Wang et al., 2006).

Although this simple theory contains very suggestive ingredients, including the
possibility of filaments BEC, the competition between fermionic and bosonic filaments,
and the role of the transversal modes, it is clear that inter-filament interactions will
lead to interesting novel properties, which are still not well understood.

1.4 Conclusions

Since the properties of ultra-cold gases are to a large extent determined by inter-
particle interactions, the presence of dipole-dipole interactions in addition to the usual
van-der-Waals like interactions introduces qualitative changes in the physics of dipolar
gases. In these notes we have reviewed some of this interesting physics, which concern
a large variety of areas, ranging from non-linear atom optics to condensed-matter
physics. In this sense, although recent experiments on atomic Chromium condensates
have already unveiled part of the expected richness of dipolar gases, it is expected that
a new generation of experiments on polar molecules (and possibly also Rydberg gases)
may soon reach quantum degeneracy opening the path for strongly polar quantum
gases. As mentioned in these notes these systems are expected to provide radically
new scenarios for ultra-cold gases. One should hence expect exciting developments on
dipolar gases in the next future.
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Micheli, A., Pupillo, G., Büchler, H. P., and Zoller, P. (2007). Phys. Rev. A, 76,
043604.

Nath, R., Pedri, P., and Santos, L. (2007). Phys. Rev. A, 76, 013606.
Nath, R., Pedri, P., and Santos, L. (2009). Phys. Rev. Lett., 102, 050401.
Nath, R. and Santos, L. (2010). Phys. Rev. A, 81, 033626.
Ni, K.-K., Ospelkaus, S., de Miranda, M. H. G., Pe’er, A., Neyenhuis, B., Zirbel, J. J.,
Kotochigova, S., Julienne, P. S., Jin, D. S., and Ye, J. (2008). Science, 322, 231.

Ni, K.-K., Ospelkaus, S., Wang, D., Quemener, G., Neyenhuis, B., de Miranda, M.
H. G., Bohn, J. L., Ye, J., and Jin, D. S. (2010). Nature, 464, 1324.

O’Dell, D. H. J., Giovanazzi, S., and Eberlein, C. (2004). Phys. Rev. Lett., 92, 250401.
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